Base Cleavage of R-Si Bonds of Silanols RSiMe $\mathbf{O H}_{2}$. A Proposed New Mechanism of Substitution at Silicon

Colin Eaborn ${ }^{-}$
School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ Włodzimierz A. Stańczyk
Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Boczna 5, 90-362 Łodź, Poland

Cleavage of $\mathrm{R}-\mathrm{Si}$ bonds has been found to occur unexpectedly rapidly in solutions of $\mathrm{RSiMe}_{2} \mathrm{OMe}(\mathrm{R}=$ $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$ or $\mathrm{PhC}: \mathrm{C}$) in 5 vol- $\% \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ containing relatively small concentrations of NaOMe , but with a levelling off of the rate at high concentrations of the base. The behaviour is attributed to the formation of $\mathrm{RSiMe}_{2} \mathrm{OH}$ and hence $\mathrm{RSiMe}_{2} \mathrm{O}^{-}$, and it is suggested that unimolecular dissociation of the silanolate anion $\mathrm{RSiMe}_{2} \mathrm{O}^{-}$to give R^{-}and the silianone $\mathrm{Me}_{2} \mathrm{Si}=\mathrm{O}$ (both of which react rapidly with the solvent) plays a significant role. The silanols $\mathrm{RSiMe} \mathbf{2}_{2} \mathrm{OH}$ are roughly estimated to have $\mathrm{p} K_{\mathrm{a}}$ values of 11 ($\mathrm{R}=m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$) and 9.8 ($\mathrm{R}=\mathrm{PhC}: \mathrm{C}$) in water.

The cleavages of $\mathrm{R}-\mathrm{SiMe}_{3}$ bonds by $\mathrm{NaOMe}-\mathrm{MeOH}$ have been studied for a wide range of \mathbf{R} groups. ${ }^{1}$ While investigating the effects of variation in the other ligands on silicon we examined the cleavage of $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Si}(\mathrm{OMe})_{3}$ in $\mathrm{NaOMe}-\mathrm{MeOH}$. (Rapid exchange of OMe groups occurs between the substrate and the solvent under these conditions, but this should not cause any complication.) We found that the change of the observed first-order rate constant on variation of the concentration of base showed a most unusual form, which we thought would best be accounted for in terms of the presence of small amounts of water, and the consequent formation of $\mathrm{Si}-\mathrm{OH}$ bonds and hence silanolate ions, e.g. $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Si}(\mathrm{OMe})_{2} \mathrm{O}^{-}$. To investigate the possible role of such ions we turned to the simpler system involving use of $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SiMe}_{2} \mathrm{OMe}$, with the results described below. A preliminary account has appeared previously. ${ }^{2}$

Results and Discussion

Observed first-order rate constants, k, for the cleavage of $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SiMe}_{2} \mathrm{OMe}$ by $0.05-2.86 \mathrm{~m}-\mathrm{NaOMe}$ in anhydrous MeOH are shown in Table 1, and plotted against the base concentration in Figure 1. Table 2 lists the values of the specific rate constant, $k_{\mathrm{s}}(=k /[\mathrm{NaOMe}])$ and of the ratio $k_{s} / k_{\mathrm{s}}{ }^{\circ}$, where $k_{\mathrm{s}}{ }^{\circ}$ is the specific rate at low base concentrations (in this case 0.05 m), and also includes the corresponding values of $k_{\mathbf{s}} / k_{\mathbf{s}}{ }^{\circ}$ for cleavage of $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SiMe}_{3}{ }^{3}$ It will be seen that the changes in $k_{5} / k_{\mathrm{s}}{ }^{\circ}$ are fairly similar for the two compounds, and thus in this medium $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SiMe}_{2} \mathrm{OMe}$ behaves normally. (However, the fact that $k_{\mathbf{s}} / k_{\mathrm{o}}$ is $c a .20 \%$ larger than might have been expected in 2.86 m base suggests that possibly a little silanolate ion is formed under these conditions as a result of the presence of traces of water.) The methoxide is 8.8 times as reactive as $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SiMe}_{3}$ at 2.00 m base concentration, and this increase in reactivity can be attributed to the greater ease of nucleophilic attack at silicon as a result of increased electron withdrawal from this atom.

Very different behaviour was observed when the cleavage of $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SiMe}_{2} \mathrm{OMe}$ was carried out in methanol containing $5 \mathrm{vol}-\%$ of water and added NaOMe . (The base in the $5 \% \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ system is, for convenience, referred to throughout the discussion as NaOMe although some OH^{-}must be present.) Whereas with NaOMe in 2 or $10 \% \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ (and thus, it can be assumed, in $5 \% \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$) the observed firstorder rate constant for cleavage of $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SiMe}_{3}$ varies

Figure 1. Plot of observed first-order rate constant, k, against the base concentration for cleavage of $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SiMe}_{2} \mathrm{OMe}$ at $50.0{ }^{\circ} \mathrm{C}$ in (a) $\mathrm{MeOH}(\square)$ and (b) $5 \mathrm{vol}-\% \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ (O). The curve in case (b) is that generated by equation (8)
in a very similar way to that observed for reactions in MeOH alone (see Table 2), ${ }^{2}$ in the case of the methoxy compound the rate in $5 \% \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ initially rises much more steeply, to values markedly higher than those observed in MeOH alone, but then starts to level off, ultimately (above 2.1 m base) becoming lower than that in the latter medium (see Table 3 and Figure 1).

We suggest that this behaviour in the water-containing medium is caused by the formation from the initial methoxide, $\mathrm{RSiMe}_{2} \mathrm{OMe}\left(\mathrm{R}=m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right)$, of some hydroxide $\mathrm{RSiMe}_{2} \mathrm{OH}$ and hence, in the presence of base, some silanolate ion $\mathrm{RSiMe}_{2} \mathrm{O}^{-}$, the proportions of the various species being controlled by the equilibrium constants for reactions (1) and (2). \dagger It can safely be assumed that the silanolate ion would,
\dagger It is possible that a little of the disiloxane $\left(\mathrm{RMe}_{2} \mathrm{Si}\right)_{2} \mathrm{O}$ is also present, but this would have no significant effect. (Its $\mathrm{Si}-\mathrm{R}$ bonds should be cleaved at a very similar rate to those of $\mathrm{RSiMe}_{2} \mathrm{OMe}$.) The disiloxane was found to be converted fairly slowly into $\mathrm{RMe}_{2} \mathrm{SiO}^{-}$in $5 \% \mathrm{H}_{2} \mathrm{O}$ MeOH containing $1.5 \mathrm{M}-\mathrm{NaOMe}$ (see Experimental section).

Table 1. Apparent first-order rate constants, k, for cleavage of $\mathrm{RSiMe}_{2} \mathrm{X}$ by NaOMe in MeOH or $5 \mathrm{vol}-\% \mathrm{H}_{\mathbf{2}} \mathrm{O}-\mathrm{MeOH}^{a}$

			$10^{5} \mathrm{k} / \mathrm{s}^{-1}$			
R	X	$10^{4}\left[\mathrm{RSiMe}_{2} \mathrm{X}\right] / \mathrm{m}$	$\theta_{\mathrm{c}} /{ }^{\circ} \mathrm{C}$	[MeONa]/m	$\overbrace{5 \% \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}}$	MeOH
$m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	Me	3.0	50	2.00	4.80	$3.90{ }^{\text {b }}$
$m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	OMe	46	50	0.02	2.20	
				0.05	5.0	0.40
				0.50	22.9	4.20
				1.01	28.8	12.2
				2.00	35.0	34.0
				2.86	39.0	82.4
PhC:C	Me	45	30	0.05	975	642
PhC: ${ }_{\text {: }}$	OMe	50	30	0.001	1000	234
				0.01	7200	2200
				0.03	13600	6630
				0.05	17000	11000

${ }^{a}$ For simplicity the base is referred to as NaOMe although some hydroxide ion must be present in the $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH} .{ }^{b}$ Lit., ${ }^{3} 3.95 \times 10^{-5} \mathrm{~s}^{1}$.

Table 2. Values of k_{5} / k_{0} for cleavage of $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SiMe}_{2} \mathrm{X}$ by NaOMe in MeOH or $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $50.0^{\circ} \mathrm{C}^{a}$

X	$k_{3} / k_{3}^{\text {ob }}$			
		Me		OMe
[MeONa]/m	$\mathrm{MeOH}^{\text {c }}$	$\begin{gathered} 10 \% \\ \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH} \end{gathered}$	MeOH	$\stackrel{5 \%}{\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}}$
0.05	1.00	1.00	1.00	1.00
0.50	1.02	1.03	1.05	0.42
1.0	1.20	1.31	1.52	0.26
2.0	2.00	1.88	2.12	0.16
2.86	3.11	3.02	3.60	0.12

a The concentrations of $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SiMe}_{2} \mathrm{X}$ were as shown in Table $1 .{ }^{b} k_{\mathbf{3}}=k /[\mathrm{NaOMe}]$, where k is the observed first-order rate constant; $k_{\mathrm{s}}{ }^{\circ}$ is the value of $\boldsymbol{k}_{\mathrm{s}}$ at very low base concentrations. ${ }^{c}$ Ref. 3.

$$
\begin{align*}
\mathrm{RSiMe}_{2} \mathrm{OMe}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{RSiMe}_{2} \mathrm{OH}+\mathrm{MeOH} \tag{1}\\
\mathrm{RSiMe}_{2} \mathrm{OH}+\mathrm{OMe}^{-} \rightleftharpoons \mathrm{RSiMe}_{2} \mathrm{O}^{-}+\mathrm{MeOH} \tag{2}
\end{align*}
$$

because of its negative charge and high electron density at the silicon atom, be cleaved at a negligible rate by direct attack of the base anion at silicon. We suggest, however, that there may be a significant contribution to the observed rate by the internal nucleophilic displacement shown in equation (3), which gives R^{-}and the silanone $\mathrm{RSiMe}_{2}=0$, both of which react rapidly with the solvent, as shown in equations (4) and (5).* The

$$
\begin{align*}
& \mathrm{R} \mathrm{SiMe}_{2} \stackrel{\curvearrowleft}{\mathrm{O}} \longrightarrow \mathrm{R}^{-}+\mathrm{Me}_{2} \mathrm{Si}=\mathrm{O} \tag{3}\\
& \mathrm{Me}_{2} \mathrm{Si}=\mathrm{O}+\mathrm{MeOH} \longrightarrow \mathrm{Me}_{2} \mathrm{Si}(\mathrm{OMe}) \mathrm{OH} \tag{4}\\
& \mathrm{R}^{-}+\mathrm{MeOH} \longrightarrow \mathrm{RH}+\mathrm{OMe}^{-} \tag{5}
\end{align*}
$$

observed rate constant at a given base concentration would then be made up of contributions from (a) decomposition of the anion, and (b) the cleavage of $\mathrm{RSiMe}_{2} \mathrm{OMe}$ and $\mathrm{RSiMe}_{2} \mathrm{OH}$ by direct attack of base at silicon. For simplicity, in the initial discussion below we assume that $\mathrm{RSiMe}_{2} \mathrm{OMe}$ and $\mathrm{RSiMe}_{2} \mathrm{OH}$ have the same reactivity, and the observed rate constant k at a

[^0]Table 3. Cleavage of $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SiMe}_{2} \mathrm{OMe}$ by NaOMe in $5 \mathrm{vol} . \%$ $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $50.0^{\circ} \mathrm{C}^{a}$

$[\mathrm{NaOMe}] / \mathrm{M}$	$10^{6} \mathrm{k} / \mathrm{s}^{1 \mathrm{~b}}$	r^{c}
0.020	22	0.05
0.050	50	0.11
0.10	84	0.20
0.20	142	0.33
0.30	192	0.43
0.40	212	0.50
0.50	229	0.56
1.00	288	0.71
1.50	337	0.79
2.00	350	0.83
2.86	390	0.88

${ }^{a}$ For initial concentration of $\mathrm{RSiMe}_{2} \mathrm{OM}$ see Table 1 ; see also footnote a to Table 1. ${ }^{b}$ Observed first-order rate constant. ${ }^{\text {c }}$ Fraction of $\mathrm{RSiMe}_{2} \mathrm{OMe}$ converted into $\mathrm{RSiMe}_{2} \mathrm{O}^{-}$, assuming half conversion at 0.40 m -base.
given base concentration is then given by equation (6), where r

$$
\begin{equation*}
k=k_{\mathbf{s}(\mathrm{AX})}(1-r)[\mathrm{NaOMe}]+r k_{\mathrm{A}^{-}} \tag{6}
\end{equation*}
$$

is the fraction of the initial $\mathrm{RSiMe}_{2} \mathrm{OMe}$ (subsequently frequently denoted by AMe) present as the anion $\mathrm{RSiMe}_{2} \mathrm{O}^{-}$ (frequently denoted by A^{-}), $k_{\mathrm{s}(\mathrm{Ax})}$ is the second-order (specific) rate constant for $\mathrm{RSiMe}_{2} \mathrm{OMe}$ (AMe) and $\mathrm{RSiMe}_{2} \mathrm{MeOH}$ (AH), and $k_{\mathrm{A}^{-}}$the first-order rate constant for the decomposition of the $\mathrm{RSiMe}_{2} \mathrm{O}^{-}$species. Since (a) the proportion of $\mathrm{RSiMe}_{2} \mathrm{O}^{-}\left(\mathrm{A}^{-}\right)$present is given by the value of the equilibrium constant K, where $K=\left(\left[\mathrm{A}^{-}\right]\right) /[\mathrm{AMe}+\mathrm{AH}]-$ $[\mathrm{NaOMe}]$, and $(b)\left[\mathrm{A}^{-}\right] /[\mathrm{AMe}+\mathrm{AH}]=r /(1-r)$, equation (6) can be re-expressed as in equation (7), which shows that the observed rate constant should be linearly related to the fraction of the $\mathrm{RSiMe}_{2} \mathrm{OMe}$ present as $\mathrm{RSiMe}_{2} \mathrm{O}^{-}$, i.e. to r.

To test the validity of equation (7) we need to know the value

$$
\begin{equation*}
k=\left\{\left(k_{\mathbf{s}(\mathrm{Ax})} / K\right)+k_{\mathrm{A}}-\right\} r \tag{7}
\end{equation*}
$$

of K. This could not be determined directly for m $\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SiMe}_{2} \mathrm{OMe}$ because of the cleavage, and so we turned to $\mathrm{PhCH}_{2} \mathrm{SiMe}_{2} \mathrm{OMe}$. For the latter, u.v. spectroscopy indicated that (at room temperature) the conversion of the methoxide into the silanolate ion is half complete in 0.45 m NaOMe (see Experimental section). Since $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ $\mathrm{SiMe}_{2} \mathrm{OH}$ will be slightly more acidic than $\mathrm{PhCH}_{2} \mathrm{Me}_{2} \mathrm{SiOH}$, we arbitrarily assume that conversion of $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Me}_{2}-$ SiOMe would be half complete at 0.40 m base. (The degree of

Figure 2. Plot of observed first-order rate constant, k, for cleavage of $\mathrm{RSiMe}_{2} \mathrm{OMe}\left[(a) \mathrm{R}=m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right.$; lower line and left-hand vertical axis; (b) $\mathrm{R}=\mathrm{PhC}=\mathrm{C}$; upper line and right-hand vertical axis] against r, the fraction of $\mathrm{RSiMe}_{2} \mathrm{OMe}$ present as $\mathrm{RSiMe}_{2} \mathrm{O}^{-}$
uncertainty in this figure would have no significance in the subsequent discussion.) This leads to the values of r shown in Table 3, and use of these gives the plot of k against r shown in Figure 2, which is satisfactorily linear. It can reasonably be concluded that the form of the relationship between k and [NaOM C], as depicted in Figure 1, is attributable to the formation of $\mathrm{RSiMe}_{2} \mathrm{O}^{-}$.

From the plot in Figure 2 it can be seen that the observed rate constant at the point at which $r=0.5$, i.e. at $[\mathrm{NaOMe}]=$ 0.40 m , is $215 \times 10^{-6} \mathrm{~s}^{-1}$, and the value at which the observed rate constant should level off is $430 \times 10^{-6} \mathrm{~s}^{-1}$.

The problem now is to estimate the relative contributions of the components of the overall process. We first note that the observed variation of k with [NaOMe], and the linearity of the plot of k against r, would be found even if the contribution of either of the two proposed processes were zero. If the decomposition of the silanolate ion made no significant contribution, this would imply a value of $k_{s(A X)}$ of $10.7 \times 10^{4} 1$ $\mathrm{mol}^{-1} \mathrm{~s}^{-1} \quad$ \{given by $k=2.15 \times 10^{-4} \mathrm{~s}^{-1}=0.5 \quad k_{\mathrm{s}(\mathrm{AX})^{-}}$ [NaOMe] at $0.40 \mathrm{~m}-\mathrm{NaOMe}\}$. We can estimate with some confidence the value of k_{s} for the direct bimolecular cleavage of $\mathrm{RSiMe}_{2} \mathrm{OMe}$ in the $5 \% \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ medium by noting that at a 1.0 m base concentration the cleavage of RSiMe_{3} in this medium is 1.3 times as fast as that in $\mathrm{NaOMe}-\mathrm{MeOH}^{3}$ (in the present work a factor of 1.24 was observed for 2.0 m base), and applying this factor to the value of k_{3} for $\mathrm{RSiMe}_{2} \mathrm{OMe}$ in MeOH at a low base concentration (viz. $8 \times 10^{-5} 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ at 0.05 m) gives a k_{s} value of $c a .10 \times 10^{-5} 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ at such concentrations in $5 \% \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$, i.e. about one-eleventh of the value of $k_{s(A X)}$ derived above on the assumption that k_{A} - is zero. Thus if effectively all the $\mathrm{RSiMe}_{2} \mathrm{OMe}$ were converted into $\mathrm{RSiMe}_{2} \mathrm{OH}$ in the medium used then the value of k_{s} for $\mathrm{RSiMe}_{2} \mathrm{OH}$ would have to be ca. 11 times as large as that for $\mathrm{RSiMe}{ }_{2} \mathrm{OMe}$. If, as is more likely, the $\mathrm{RSiMe}_{2} \mathrm{OH}$: $\mathrm{RSiMe}_{2} \mathrm{OMe}$ ratio is in the region of $1: 4$ (see later), then the value of k_{s} for $\mathrm{RSiMe}_{2} \mathrm{OH}$ would have to be ca. 50 times as large as that for $\mathrm{RSiMe}_{2} \mathrm{OMe}$. Since there is a fairly small increase in k_{s} on going from RSiMe_{3} to $\mathrm{RSiMe}_{2} \mathrm{OMe}$ (the factor is 8.8) it seems unlikely that there would be a large increase on going from $\mathrm{RSiMe}_{2} \mathrm{OMe}$ to $\mathrm{RSiMe}_{2} \mathrm{OH}$, and thus it is probable that there is a substantial contribution to the observed rate from the decomposition of the silanolate ion.

If we return to the simplifying assumption that the values of k_{s} for $\mathrm{RSiMe}_{2} \mathrm{OMe}$ and $\mathrm{RSiMe} \mathrm{OH}_{2} \mathrm{OH}$ are similar, then $k_{\mathrm{s}(\mathrm{Ax})}=$ $100 \times 10^{-6} 1 \mathrm{~mol} \mathrm{~s}^{-1}$ and the value of k_{A} is $390 \times 10^{-6} \mathrm{~s}^{-1}$, with the value of k (in s^{-1}) at any base concentration then given

Figure 3. Plot of observed first-order rate constant, k, against the base concentration for cleavage of $\mathrm{PhC} \equiv \mathrm{CSiMe}_{2} \mathrm{OMe}$ at $30.0^{\circ} \mathrm{C}$ in (a) MeOH (\square) and (b) $5 \mathrm{vol}-\% \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ (O). The curve in case (b) is that generated by the equation $k=3.3(1-r)[\mathrm{NaOMe}]+(160$ $r \times 10^{-3}$) (see text)
by equation (8). (Of the limiting value of $430 \times 10^{-6} \mathrm{~s}^{-1}$ for k,

$$
\begin{equation*}
10^{6} k=100(1-r)[\mathrm{NaOMe}]+390 r \tag{8}
\end{equation*}
$$

the bimolecular cleavage would contribute $40 \times 10^{-6} \mathrm{~s}^{-1}$ and the unimolecular decomposition of the silanolate 390×10^{-6} \mathbf{s}^{-1}.) The line drawn in Figure 1 for the variation of k with [NaOMe] for $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SiMe}_{2} \mathrm{OMe}$ in $5 \% \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ is actually that generated by equation (8). On this basis, the unexpectedly high rate of cleavage observed for $\mathrm{RSiMe}_{2} \mathrm{OMe}$ in the aqueous medium arises predominantly from the high rate of decomposition of the silanolate anion.

We have assumed above that the value of k_{s} for $\mathrm{RSiMe}_{2} \mathrm{OMe}$ remains constant over the whole range of base concentration, and since k_{2} values actually increase significantly with this concentration at 1 m and above (see Table 2 and ref. 3) some justification of our procedure is needed. The observed rate constant, k, for cleavage of RSiMe_{3} species in $\mathrm{NaOMe}-\mathrm{MeOH}$ (and in other media) shows a linear dependence on the h_{-} acidity function (given by $H_{-}=-\log h_{-}$, where H_{-}is the more commonly used acidity function ${ }^{3-5}$). The ratio [A^{-}]/ $[\mathrm{AMe}+\mathrm{AH}]$ should, by the definition of h_{-}(and H_{-}), be proportional to h_{-}rather than [NaOMe], and so at fairly high degrees of conversion of AMe into A^{-}, $[\mathrm{AMe}+\mathrm{AH}]$ should be approximately inversely proportional to h_{-}. Thus a change in base concentrations which leads to a doubling of k for AMe and AH will at the same time reduce the proportion of [AMe + AH] to about one-half, and so the contribution by AMe and AH will be approximately the same as if k_{s} were independent of, and the ratio $\left[\mathrm{A}^{-}\right] /[\mathrm{AMe}+\mathrm{AH}]$ determined solely by, the base concentration. (In the case of the cleavage of $\mathrm{PhC}: \mathrm{CSiMe}_{3}$ considered below, the data refer to low base concentrations, at which k_{s} should remain constant over the whole range.)

We next turned to the cleavage of $\mathrm{PhC}: \mathrm{CSiMe}_{2} \mathrm{OMe}$. We chose this knowing that it would be cleaved at a convenient rate at very low base concentrations, at which, we thought, there might be little conversion into the anion $\mathrm{PhC}_{:} \mathrm{CSiMe}_{2} \mathrm{O}^{-}$, so that the dependence of the observed rate constant on the base concentration might be similar to that for RSiMe_{3} species. In fact, although this is the case in MeOH (k being directly proportional to [NaOMe]; see Table 1), for $5 \% \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ the plot of $k\left(\right.$ at $30^{\circ} \mathrm{C}$) against [NaOMe] (see Figure 3) has a rather similar shape to that of the earlier portion of the
corresponding plot for $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SiMe}_{2} \mathrm{OMe}$ (at $50^{\circ} \mathrm{C}$). The implication is that $\mathrm{PhC}_{:} \mathrm{CSiMe}_{2} \mathrm{OH}$ is markedly more acidic than $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{SiMe}_{2} \mathrm{OH}$, and a satisfactorily linear plot of k against r is obtained if it is assumed that $\mathrm{PhC}: \mathrm{CSiMe}_{2} \mathrm{OMe}$ is half converted into $\mathrm{PhC}_{6} \mathrm{CSiMe}_{2} \mathrm{O}^{-}$at a base concentration of $c a .0 .018 \mathrm{~m}$ (see Figure 2).
From the plot in Figure 2 it can be seen that k has a value of $110 \times 10^{-3} \mathrm{~s}^{-1}$ for $r=0.5$, i.e. in 0.018 m base, and the limiting value of k would be $220 \times 10^{-3} \mathrm{~s}^{-1}$. If the cleavage were exclusively through the bimolecular process (i.e. direct attack on $\mathrm{PhC}_{\mathbf{i}} \mathrm{CSiMe}_{2} \mathrm{OMe}$ and $\left.\mathrm{PhC}: \mathrm{CSiMe}_{2} \mathrm{OH}\right)$ the value of $k_{\mathbf{2}(A x)}$ for this would be $121 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$. A value of $c a .3 .31 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ can be estimated for k_{3} for base cleavage of $\mathrm{PhC}: \mathrm{CSiMe}_{2} \mathrm{OMe}$ in 5% $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ (at $30^{\circ} \mathrm{C}$) by multiplying the value of $2.21 \mathrm{~mol}^{-1}$ s^{-1} observed in $\mathrm{NaOMe}-\mathrm{MeOH}$ by 1.5 , the factor which applies to the k_{3} value for $\mathrm{PhC}_{:} \mathrm{CSiMe}_{3}$ for this change of medium (Table 1). Thus to account for the observed rate of cleavage in $5 \% \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}, \mathrm{PhC}_{6} \mathrm{CSiMe}_{2} \mathrm{OH}$ would have to be cleaved $c a$. 3.6 times as readily in the direct attack as $\mathrm{PhC}: \mathrm{CSiMe}_{2} \mathrm{OMe}$ if effectively all of the latter were converted into the hydroxide in the medium used. The corresponding factor would be ca. 18 if, as is more likely, the ratio of methoxide to hydroxide is about 4:1. In this case, however, since there is an 18-fold increase in k_{3} on going from $\mathrm{PhC}_{:} \mathrm{CSiMe}_{3}$ to $\mathrm{PhC}_{6} \mathrm{CSiMe}_{2} \mathrm{OMe}$, a further substantial increase on going to $\mathrm{PhC}: \mathrm{CSiMe}_{2} \mathrm{OH}$ cannot be ruled out, and it is possible that the decomposition of the silanolate plays only a minor role. If we nevertheless assume, for comparison, that the value of k_{s} at $30^{\circ} \mathrm{C}$ for $\mathrm{PhC}: \mathrm{CSiMe}_{2} \mathrm{OH}$ is the same as that for $\mathrm{PhC}: \mathrm{CSiMe}_{2} \mathrm{OMe}$, viz. $3.31 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$, then the value of k_{A} - for decompostion of the anion would be $c a$. $160 \times 10^{-3} \mathrm{~s}^{-3}$, and this would be the contribution of this process to the limiting rate of $220 \times 10^{-3} \mathrm{~s}^{1}$ at high base concentrations, with the bimolecular process contributing ca. $60 \times 10^{-3} \mathrm{~s}^{-1}$. The upper curve in Figure 3 is that generated by the equation $k=3.3(1-r)[\mathrm{NaOMe}]+\left(160 r \times 10^{-3}\right)$.

If the assumption is valid that in both cases the value of $k_{\mathbf{s}}$ for the bimolecular cleavage of the hydroxide is similar to that for the methoxide, then it would follow that $\mathrm{PhC}: \mathrm{CSiMe}_{2} \mathrm{O}^{-}$ undergoes unimolecular decomposition in $5 \% \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ at $30^{\circ} \mathrm{C}$ some 430 times as rapidly as $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SiMe}_{2} \mathrm{O}^{-}$at $50^{\circ} \mathrm{C}$. Assuming a 3 -fold decrease in the rate constant for the latter compound for each $10^{\circ} \mathrm{C}$ fall in temperature, the reactivity ratio would be ca. 4000 at $30^{\circ} \mathrm{C}$.

The validity of our view that unimolecular decompositon of silanolate ions may play a significant part depends on the validity of the assumption that $\mathrm{RSiMe}_{2} \mathrm{OH}$ species are not much more readily cleaved than $\mathrm{RSiMe}_{2} \mathrm{OMe}$ species in the bimolecular process. This would not be a satisfactory position if there were no independent indication of the existence of a silanolate ion decomposition process. Such an indication is, in fact, available from studies of the methanolysis of TsiSiPhRX species [$\left.\mathrm{Tsi}=\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{C}\right]$, in which steric hindrance very strongly inhibits attack of nucleophiles on silicon. ${ }^{6}$ It is known that the methanolysis of TsiSiPhHI and the more hindered $\mathrm{TsiSiMe}_{2} \mathrm{I}$ is not catalysed by $\mathrm{NaOMe},{ }^{7,8}$ that the latter undergoes solvolysis only very slowly in refluxing $\mathrm{NaOMe}-$ $\mathrm{MeOH},{ }^{8}$ and, consistently, $\mathrm{TsiSiPh}(\mathrm{OMe}) \mathrm{I}$ undergoes no detectable reaction with $0.5 \mathrm{~m}-\mathrm{NaOMe}-\mathrm{MeOH}$ in 2 h under reflux. In sharp contrast, T siSiPh(OH$) \mathrm{I}$, which did not react with MeOH alone in 24 h under reflux, was found to be completely converted into $\mathrm{TsiSiPh}(\mathrm{OH})(\mathrm{OMe})$ within 5 min at room temperature in an initially 0.17 m solution of the iodide in $0.25 \mathrm{~m}-\mathrm{NaOMe}$ in MeOH (i.e., with only a 0.08 m excess of the base). ${ }^{2}$ Since the methanolysis of the much less hindered species TsiSiPhHI is not significantly accelerated by base, ${ }^{8}$ it is extremely unlikely that the abnormal reactivity of $\mathrm{TsiSiPh}(\mathrm{OH})$ I arises from bimolecular attack of the methoxide ion at silicon, and much more probable that it involves a process analogous to
that depicted in equations (3) and (4) but with iodide ion as the leaving group.

It seems likely that unimolecular decomposition of a silanolate ion to a silanone (of the type $-\mathrm{SiR}_{2} \mathrm{OSiR}_{2} \mathrm{O}^{-} \rightarrow$ $-\mathrm{SiR}_{2} \mathrm{O}^{-}+\mathrm{R}_{2} \mathrm{Si}=\mathbf{O}$) also plays a role in base-catalysed processes leading to polysiloxane polymers. ${ }^{9}$

The proposed silanolate ion to silanone decomposition is, of course, analogous to well established processes in carbonyl chemistry (in which, however, the doubly bonded species is formed in a fast rather than a rate-determining step); e.g. in the hydrolysis of esters and acyl halides [equation (9)]. There are also analogues in phosphorus chemistry; ${ }^{10}$ e.g. in the hydrolysis of phosphoric monoester dianions [equation (10)].

We should emphasize that, whatever the mechanisms involved, the results presented in this paper reveal that the presence of a hydroxy group on silicon can greatly facilitate the removal of an organic group from the same silicon atom by dilute base. This observation could be of value in organic sysntheses in which at some stage a silyl protecting group has to be removed from an organic centre under basic conditions; e.g. there could be an advantage in using, rather than RSiR_{3} species, $\mathrm{RSiR}^{\prime}{ }_{2} \mathrm{OMe}$ species in which the OMe group is readily replaced by OH in weakly basic, partly aqueous media.

The Acidities of $\mathrm{PhCH}_{2} \mathrm{SiMe}_{2} \mathrm{OH}$ and $\mathrm{PhC}: \mathrm{CSiMe}_{2} \mathrm{OH}$.From the base concentration at which half of the initial AMe ($\mathrm{RSiMe}_{2} \mathrm{OMe}$) is converted into $\mathrm{A}^{-}\left(\mathrm{RSiMe}_{2} \mathrm{O}^{-}\right.$), we could calculate the concentration at which the ratio $\left[\mathrm{A}^{-}\right] /[\mathrm{AH}]$ ($\mathrm{AH}=\mathrm{RSiMe}_{2} \mathrm{OH}$) would be unity if we knew the [AMe]/[AH] ratio in the medium used. In this medium MeOH and $\mathrm{H}_{2} \mathrm{O}$ are present in a molar ratio of $8.2: 1$, and if we assume that the equilibrium constant for reaction (1) is statistically determined, and allow for the fact that two OH groups are available in each water molecule, this implies a value of 4 for the ratio $[\mathrm{AMe}] /[\mathrm{AH}]$. Thus for $\mathrm{A}=\mathrm{PhCH}_{2} \mathrm{SiMe}_{2} \mathrm{O}$, since $\left[\mathrm{A}^{-}\right] /[\mathrm{AMe}+\mathrm{AH}]=1$ at $c a .0 .45 \mathrm{~m}$ base, $\left[\mathrm{A}^{-}\right] /[\mathrm{AH}]=5$ at this concentration, and would be 1 at $c a .0 .09 \mathrm{~m}$ base. The corresponding base concentration for $\mathrm{A}=\mathrm{PhC}: \mathrm{CSiMe}_{2} \mathrm{O}^{-}$is 0.0036 m , and thus $\mathrm{PhC}_{:} \mathrm{CSiMe}_{2} \mathrm{OH}$ is 25 times as acidic as $\mathrm{PhCH}_{2} \mathrm{SiMe}_{2} \mathrm{OH}$. [This same factor is obtained from the ratio of the base concentrations at which the respective AMe species are half converted into A^{-}; the value of the factor does not depend on the value of the equilibrium constant for reaction (1), but its validity depends on the accuracy of the assumption that this constant is the same in both cases.]

Examination of the u.v. spectrum of phenol in $5 \% \mathrm{H}_{2} \mathrm{O}$ MeOH containing varying concentrations of base indicated that the conversion into phenolate was half complete for $c a$. 0.005 m base, and we conclude that, very roughly, the acidity of $\mathrm{PhC}: \mathrm{CSiMe}_{2} \mathrm{OH}$ is close to that of PhOH (which has a $\mathrm{p} K_{\mathrm{a}}$ of 9.89 in water), which is 18 times as acidic as $\mathrm{PhCH}_{2} \mathrm{SiMe}_{2} \mathrm{OH}$. Thus, as a rough estimate, $\mathrm{PhC}: \mathrm{CSiMe}_{2} \mathrm{OH}$ and $\mathrm{PhCH}_{2}-$ $\mathrm{SiMe}_{2} \mathrm{OH}$ would have $\mathrm{p} K_{\mathrm{a}}$ values of 9.8 and 11 , respectively, in water. The acidities of these silanols are unexpectedly high in view of an observation that trialkylsilanols are much weaker acids than phenols in pyridine, but the same study showed that

Table 4. Cleavage of $\mathrm{PhC}: \mathrm{CSiMe}_{2} \mathrm{OMe}$ by NaOMe in $5 \mathrm{vol}-\% \mathrm{H}_{2} \mathrm{O}-$ MeOH at $30.0{ }^{\circ} \mathrm{C}^{a}$

$[\mathrm{NaOMe}] / \mathrm{M}$	$10^{3} k / \mathrm{s}^{-1 b}$	$r^{\boldsymbol{c}}$
0.0010	10	0.05
0.0050	47	0.20
0.0070	62	0.28
0.010	76	0.36
0.020	110	0.53
0.030	136	0.64
0.040	154	0.69
0.050	170	0.74

a.b As in Table 3. ${ }^{\text {c }}$ Fractions of $\mathrm{RSiMe}_{2} \mathrm{OMe}$ converted into $\mathrm{RSiMe}_{2} \mathrm{O}$ assuming half conversion at 0.018 m base.
in this solvent triphenylsilanol appears to be somewhat less acidic than p-methoxyphenol ($\mathrm{p} K_{\mathrm{a}} 10.20$ in water) but more acidic than p-nitroaniline ($\mathrm{p} K_{\mathrm{a}} 11.96$ in water). ${ }^{11}$

The substantial shift in the u.v. spectrum on going from $\mathrm{PhCH}_{2} \mathrm{SiMe}_{2} \mathrm{OMe}$ to $\mathrm{PhCH}_{2} \mathrm{SiMe}_{2} \mathrm{O}^{-}$can be attributed to the increase in hyperconjugative electron release into the aromatic ring from the $\mathrm{CH}_{2}-\mathrm{Si}$ bond. ${ }^{12}$

We note finally that (as for $\mathrm{PhC}: \mathrm{CSiMe}_{2} \mathrm{OH}$) in suitable cases the variation of the rate of replacement of X with the base concentration in appropriate media could be used to derive an approximate measure of the acidity of silanols of the type $\mathrm{XSiR}_{2} \mathrm{OH}$ where direct measurement is impracticable.

Experimental

Materials.-Methanol was dried as previously described. ${ }^{13}$ Solutions of NaOMe were prepared by dissolution of sodium. Organosilicon compounds were prepared as follows.
$m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SiMe}_{2} \mathrm{OMe}$ was prepared as previously described. ${ }^{14}$
$\mathrm{PhC}: \mathrm{CSiMe}_{2} \mathrm{OMe}$.-Phenylacetylene ($51 \mathrm{~g}, 0.55 \mathrm{~mol}$) was added to the Grignard reagent made from $\operatorname{EtBr}(55 \mathrm{~g}, 0.51 \mathrm{~mol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(200 \mathrm{~cm}^{3}\right)$. The mixture was refluxed for 4 h then cooled and added dropwise to a stirred mixture of $\mathrm{Me}_{2} \mathrm{SiCl}_{2}(64.5 \mathrm{~g}$, $0.50 \mathrm{~mol})$ and $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}_{3}\right)$. The mixture was subsequently refluxed for 6 h then filtered under nitrogen, the $\mathrm{Et}_{2} \mathrm{O}$ and any residual $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$ were distilled off under reduced pressure, and the residue was fractionated to give $\mathrm{PhC}: \mathrm{CSiMe}_{2} \mathrm{Cl}(31 \mathrm{~g}$, 30%), b.p. $104{ }^{\circ} \mathrm{C}$ at 4 mmHg (lit., ${ }^{15} 96^{\circ} \mathrm{C}$ at 2 mmHg). The product was dissolved in $\mathrm{Et}_{2} \mathrm{O}\left(300 \mathrm{~cm}^{3}\right)$, and a solution of $\mathrm{MeOH}(5.8 \mathrm{~g}, 0.18 \mathrm{~mol})$ and $\mathrm{Et}_{3} \mathrm{~N}(18 \mathrm{~g}, 0.18 \mathrm{~mol})$ in $\mathrm{Et}_{2} \mathrm{O}(50$ cm^{3}) was added dropwise with stirring. The mixture was refluxed for 3 h , then light petroleum (b.p. $60-80^{\circ} \mathrm{C} ; 300 \mathrm{~cm}^{3}$) was added, followed by ice-cold water ($200 \mathrm{~cm}^{3}$). The organic layer was separated, washed, and dried $\left(\mathrm{CaCl}_{2}\right)$, and the solvents were distilled off under slightly reduced pressure. The residue was distilled at lower pressure to give $\mathrm{PhC}: \mathrm{CSiMe}_{2} \mathrm{OMe}$ $(13.1 \mathrm{~g}, 42 \%)$, b.p. $89{ }^{\circ} \mathrm{C}$ at $5 \mathrm{mmHg} . \delta\left(\mathrm{CCl}_{4}\right) 0.28(6 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $3.41(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $7-7.5(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$. The mass spectrum was as expected, with a strong $[M-\mathrm{Me}]^{+}$peak at $m / z 175$.
$\left(\mathrm{PhCH}_{2} \mathrm{SiMe}_{2}\right)_{2} \mathrm{O}$.-The methoxide $\mathrm{PhSiMe}{ }_{2} \mathrm{OMe}(2 \mathrm{~g})$ was dissolved in a mixture of methanol ($15 \mathrm{~cm}^{3}$) and 1 m -aqueous $\mathrm{HCl}\left(2 \mathrm{~cm}^{3}\right)$. After some hours an excess of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, followed by water. The organic layer was separated, washed several times with water, and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of the solvent and distillation of the residue gave $\left(\mathrm{PhCH}_{2} \mathrm{SiMe}_{2}\right)_{2} \mathrm{O}$ ($0.8 \mathrm{~g}, 51^{\circ} \%$), b.p. $140^{\circ} \mathrm{C}$ at 4 mmHg (lit., ${ }^{16} 150-151^{\circ} \mathrm{C}$ at 5.5 $\mathrm{mmHg}) ; ~ \delta\left(\mathrm{CCl}_{4}\right)-0.035(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.00\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, and $6.1-7.1(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$. Examination by g.l.c. $(5 \% \mathrm{OV}-101)$ revealed $<0.5 \%$ of impurity.

Rate Measurements.-The rates were measured spectrophoto-
metrically as previously described (with the solution contained in a thermostatted cell). ${ }^{14}$ Wavelengths used to monitor the progress of the reactions were: $279.5\left(m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)$, $279\left(m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SiMe}_{2} \mathrm{OMe}\right)$, and $273 \mathrm{~nm}\left(\mathrm{PhC}^{2} \mathrm{CSiMe}_{3}\right.$ and $\mathrm{PhC}: \mathrm{CSiMe}_{2} \mathrm{OMe}$). The u.v. spectrum of the product was identical in all cases with that of an authentic sample of m $\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$ or $\mathrm{PhC}: \mathrm{CH}$, and good first-order kinetics were observed. Rate constants were reproducible to within $\pm 3 \%$.

The $\left[\mathrm{A}^{-}\right] /[\mathrm{AH}+\mathrm{AMe}]$ Ratio for $\mathrm{A}=\mathrm{PhCH}_{2} \mathrm{SiMe}_{2} \mathrm{O}$ in $5 \% \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}-\mathrm{MeONa}$.-The u.v. spectra of $2.5 \times 10^{-3} \mathrm{M}$ solutions of $\mathrm{PhCH}_{2} \mathrm{SiMe}_{2} \mathrm{OMe}$ in $5 \% \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ containing various concentrations of NaOMe were recorded at room temperature. There was a shift in the spectrum of $c a .3 \mathrm{~nm}$ towards the visible on going from the neutral solution to 2.4 m base (e.g. the peaks at 262,268 , and 275 nm were shifted to 265 , 271 , and 278 nm), with some increase in the optical density. The optical densities (1 cm cell) at 278 nm at the base concentrations (M) in parentheses were $0.07(0.00), 0.15(0.10), 0.19(0.18), 0.28$ (0.27), 0.31 (0.38), $0.35(0.50), 0.41(0.82), 0.50(1.52)$, and 0.55 (2.40), and it was estimated that the conversion into $\mathrm{PhCH}_{2} \mathrm{SiMe}_{2} \mathrm{O}^{-}$was half complete in ca. 0.45 m base.

Behaviour of $\left(\mathrm{PhCH}_{2} \mathrm{SiMe}_{2}\right)_{2} \mathrm{O}$ in $5 \% \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$.-The u.v. spectrum of a $1.25 \times 10^{-3} \mathrm{M}$-solution of $\left(\mathrm{PhCH}_{2} \mathrm{SiMe}_{2}\right)_{2} \mathrm{O}$ in $5 \% \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ was very similar to that of a $2.5 \times 10^{-3} \mathrm{M}-$ solution of $\mathrm{PhCH}_{2} \mathrm{SiMe}_{2} \mathrm{OMe}$. In the presence of $1.5 \mathrm{~m}-\mathrm{NaOMe}$ the spectrum changed relatively slowly at room temperature, to reach an equilibrium position after about 5 h , at which it was virtually identical with that obtained from $\mathrm{PhCH}_{2} \mathrm{SiMe}_{2} \mathrm{OMe}$ under similar conditions, i.e. most of the disiloxane had been converted into $\mathrm{PhCH}_{2} \mathrm{SiMe}_{2} \mathrm{O}^{-}$.

Acknowledgements

We thank the S.E.R.C. for support (via C. E.), the British Council for a grant to enable W. A. S. to carry out work at the University of Sussex, and Mr. R. W. Bott for valuable discussions.

References

1 G. Seconi and C. Eaborn, J. Chem. Soc., Perkin Trans. 2, 1981, 1051 and references therein.
2 Z. Aiube, J. Chojnowski, C. Eaborn, and W. A. Stańczyk, J. Chem. Soc., Chem. Commun., 1983, 493.
3 C. Eaborn and F. M. S. Mahmoud, J. Organomet. Chem., 1981, 206, 49.

4 J. R. Jones, 'The Ionization of Carbon Acids,' Academic Press, London, 1973, pp. 92-102.
5 C. Eaborn, J. R. Jones, and G. Seconi, J. Organomet. Chem., 1976, 116, 83.
6 C. Eaborn, J. Organomet. Chem., 1982, 239, 93, and references therein.
7 C. Eaborn and F. M. S. Mahmoud, J. Chem. Soc., Perkin Trans. 2, 1981, 1309.
8 S. A. I. Al-Shali, C. Eaborn, and F. M. S. Mahmoud, J. Organomet. Chem., 1982, 232, 215.
9 J. Chojnowski, S. Rubinsztajn, W. Stańczyk, and M. Ścibiurek, Makromol. Chem., Rapid Commun., 1983, 4, 703.
10 A. J. Kirby and S. G. Warren, 'The Organic Chemistry of Phosphorus,' Elsevier, Amsterdam, 1967, pp. 284-301.
11 R. West and R. H. Baney, J. Inorg. Nucl. Chem., 1958, 7, 297.
12 C. Eaborn and S. H. Parker, J. Chem. Soc., 1954, 939.
13 C. Eaborn and G. Seconi, J. Chem. Soc., Perkin Trans. 2, 1976, 925.
14 C. Eaborn, A. R. Hancock, and W. A. Stanczyk, J. Organomet. Chem., 1981, 218, 147.
15 O. N. Florentsova, B. A. Sokolov, and L. I. Volkova, Bull. Acad. Sci. U.S.S.R., 1973, 1351.

16 V. M. Vdovin, N. S. Nametkin, E. Sh. Finkel'shtein, and V. D. Oppengeim, Bull. Acad. Sci. U.S.S.R., Div. Chem. Sci., 1964, 429.

Received 26th March 1984; Paper 4/489

[^0]: - There is also the possibility that \mathbf{R}^{-}is never free, but acquires a proton from the solvent as it separates.

